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Abstract
The aim of this experiment was to investigate the exogenous application of salicylic acid (SA) on morpho-physiological and 
molecular characteristics of Impatiens walleriana plants grown under water deficit stress. Three levels of soil water contents 
(95, 85, and 75% of field capacity; FC) and three levels of SA (0, 1, and 2 mM) were applied on two impatient cultivars 
(‘Tempo’ and ‘Salmon’). The results showed that increasing water deficit stress negatively affected growth and flowering 
characteristics. On the contrary, the foliar application of SA reduced the adverse effect of water deficit stress and improved 
growth and ornamental plant attributes. Water deficit increased the amount of electrolyte leakage (EL), malondialdehyde 
(MDA), peroxidase (POD) and ascorbate peroxidase (APX) activities; and proline content. The expression of the gene encod-
ing for Δ1-pyrroline-5-carboxylate synthetase (P5CS) was slightly increased under control treatment (95% FC + SA 0 mM) 
and then significantly increased at 75% FC and after the SA treatments. The expression pattern of P5CR (Δ1-pyrroline-
5-carboxylate reductase gene) was similar to that of P5CS, with differences in terms of intensity. The application of SA 
reduced the amount of EL and MDA through increased antioxidant activities and water balance. Overall, the results of this 
study showed that ‘Salmon’ cultivar was able to tolerate drought stress conditions better than ‘Tempo.’ The application of 
2 mM SA increased growth and physiological indices in drought-stressed impatient, mitigating the detrimental effects of 
water deficit in this important ornamental species.

Keywords Drought stress · Impatiens walleriana · P5CR: δ1-pyrroline-5-carboxylate reductase gene · P5CS: δ1-pyrroline-
5-carboxylate synthetase gene · Salicylic acid

Introduction

Abiotic stresses are known as being the most substantial 
potential risks for agricultural efficiency and productivity all 
over the world (Anjum and Lopez-Lauri 2011; Khan et al. 
2015). In particular, the harmful effect of drought stress on 
crops is ranked first among numerous abiotic stresses (Hayat 
et al. 2012; Khan et al. 2015). This type of stress, whose 
impact varies with plant species, growth stage, and its dura-
tion, can potentially affect almost all plant physiological 
and biochemical, from the early stage of seed germination 
to maturity (Hayat et al. 2012). To overcome water deficit, 
plant cells can decrease their osmotic potential and preserve 
cell turgor by the biosynthesis and accumulation of compat-
ible solutes, such as proline, whose biosynthesis involves 
the glutamate (Glu) and ornithine (Orn) pathways (Farooq 
et al. 2009; Hayat et al. 2012). The Glu pathway generally 
occurs under stress conditions, while the Orn pathway takes 
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place in seedling development (Armengaud et al. 2004). 
Glutamate can be reduced to glutamate-semialdehyde 
(GSA) via Δ1-pyrroline-5-carboxylate synthetase (P5CS) 
and spontaneously converted to Δ1-pyrroline-5-carboxylate 
(P5C) and then in turn reduced to proline by Δ1-pyrroline-
5-carboxylate reductase (P5CR) (Hu et al. 1992; Roosens 
et al. 1998; Szabados and Savoure 2010).

Salicylic acid (SA) plays a crucial regulatory function, 
being involved in a number of plant physiological processes, 
including plant resistance both to environmental stresses 
(Singh and Usha 2003; La et al. 2019b), and for this reason 
SA is commonly used as exogenous phytohormone/plant 
growth regulator (Singh and Usha 2003; La et al. 2019b). 
Moreover, SA is also an important signaling molecule for the 
induction of systemic obtained resistance that protects plants 
against many microbial pathogens. Several evidences prove 
that SA, even at low concentrations (0.05 mM), resulted in 
a higher plant tolerance to many types of harsh environ-
mental conditions, mainly because of the enhancement of 
plant antioxidant capacity (Horvath et al. 2007; Hayat et al. 
2010; Bidabadi et al. 2012; La et al. 2019b). For instance, 
SA causes increase in hydrogen peroxide  (H2O2) content 
in plants exposed to different abiotic stresses, that in turn 
induces the expression of gene-related antioxidant enzymes 
(Hayat et al. 2010; Bidabadi et al. 2012). The improvement 
of the activity of antioxidant enzymes including superoxide 
dismutase (SOD), peroxidase (POD), and catalase (CAT) 
in plants can efficiently reduce the damage caused by reac-
tive oxygen species (ROS) accumulation that ultimately 
induces the expression of several plant genes involved in 
stress reaction. Simultaneously, SA application also lowers 
the accumulation of malondialdehyde (MDA), a membrane 
lipid peroxidation product, and leaf membrane permeability 
(Maghsoudi et al. 2019). Additionally, it was demonstrated 
that exogenous SA causes an increase in ATP content, so 
providing sufficient energy for the metabolism of various 
substances able to improve plant resistance to high salt, low 
temperature, heavy metal, and other abiotic stresses (Hayat 
et al. 2010).

To date, several studies have reported the regulatory role 
of the exogenous application of SA, even if its effects also 
depend on the application methods (e.g., leaf spray, soaking 
the seeds, stem infusion, by irrigation), culture medium and 
timing, exogenous and endogenous SA levels, as well as on 
the stress environment, plant species, and its developmental 
stage (Horvath et al. 2007; Idrees et al. 2010; Miura and 
Tada 2014; La et al. 2019b). Several types of research indi-
cated that exogenous SA can ameliorate drought-stressed 
plants in several species (Hayat et al. 2008; Bidabadi et al. 

2012; Alam et al. 2013; Demiralay et al. 2013; Maghsoudi 
et al. 2019).

Due to their beauty and flowering period of time, many 
Impatiens species are cultivated worldwide as flowering or 
bedding plants. Among them, Impatiens walleriana is one of 
the most favorite species due to its fleshy, floriferous leaves, 
and wide variegation of flower colors. The main problems 
of this ornamental species occur during the production, 
transportation, and sale periods, due to its high vulnerabil-
ity to drought and/or physical damage. The biochemical 
and physiological responses of Impatiens spp. to drought 
stress have not been deeply studied and are poorly known. 
On this basis, the morpho-physiological, biochemical, and 
molecular responses of Impatiens walleriana plants sub-
jected to drought stress and treated with exogenous SA are 
here reported and discussed. The aim is to elucidate whether 
exogenous usage of SA could alleviate the negative effects 
of water shortage in this economically important ornamental 
species.

Materials and methods

Plant material and experimental conditions

The experiment was done at research greenhouse of the 
Faculty of Agriculture, Lorestan University, Khoramabad, 
Iran, during 2016–2017. Day and night temperatures ranged 
between 22–30 °C and 16–20 °C, respectively. The range of 
relative humidity was 55–65% and that of average daily PAR 
was 400–600 μmol photons m−2 s−1. Seeds were sown manu-
ally in pots (17 cm for both height and maximum diameter) 
containing equal proportions of soil, sand, and cow manure. 
After plants establishment, SA was sprayed weekly until the 
end of the experiment. Soil water content at field capac-
ity (FC) was measured using pressure plate (Soil moisture 
equipment Corp., Santa Barbara, Ca., USA). Then, irrigation 
interval at 95, 85 and 75% of FC was determined using the 
time domain reflectometry (TDR) (Dobriyal et al. 2012).

Morpho‑physiological characteristics

Growth characteristics were recorded in all the plants, 
including plant height (cm), number of leaves per plant, stem 
diameter (mm), number of auxiliary shoots, bud appearance 
(days from sowing), time of flower opening (days), num-
ber of flowers, flower diameter (mm), and flower longevity 
(days). Then, plants were harvested and separated into roots, 
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leaves, and stems and their fresh weight (g  plant−1), root 
length (cm), and root volume  (cm3) were measured. Dry 
weight was measured after oven-drying at 80 °C for 48 h. 
Leaf area  (cm2) was measured using a leaf area meter (Delta 
T-scan, Version 2.03; Delta-T Devices Ltd., Burwell, and 
Cambridge, UK). The water use efficiency measurements 
were done in order to estimate the water productivity over 
time using the following equation (Nazarli et al. 2010).

WUE (%) = (DW∕WU) × 100 Where WUE is water use 
efficiency, DW is dry weight, and WU is water use (amount 
of irrigation (g) during the experiment).

Photosynthetic pigments assays

Chlorophyll a (Chl a), chlorphyll b (Chl b), and carotenoids 
were measured in fresh leaf samples at the end of the exper-
iment. According to Lichtenthaler (1987), leaf samples 
(0.1 g) were powdered in liquid nitrogen and homogenized 
with 10 mL pure acetone and filtered, in order to obtain a 
final volume of 10 mL. Pigment concentrations were calcu-
lated from the absorbance of extract at  A662,  A645 and  A470, 
using the following equations (Lichtenthaler 1987):

Determination of relative water content

To determine plant water status, relative water content 
(RWC) was measured according to the method of Yamasaki 
and Dillenburg (1999):

where FW is fresh weight, DW is dry weight, and TW is 
turgid weight.

Chl a
(

mg g−1FW
)

= 11.24 × A662− 2.04 × A645

Chl b
(

mg g−1FW
)

= 20.13 × A645− 2.04 × A662

Total Chl
(

mg g−1FW
)

= Chl a + Chl b

Chl b
(

mg g−1FW
)

= 20.13 × A645− 2.04 × A662

Carotenoids
(

mg g−1FW
)

=
(

1000 × A470− 1.90 Chl a − 63.14 Chl b
)

− 214

RWC (%) = (FW − DW)∕(TW − DW) × 100

Electrolyte leakage (%) assay

Electrolyte leakage (IL) was measured and calculated 
according to the method described by Huo et al. (2016). In 
order to determine the degree of electrolyte leakage (%), 
leaves were collected and washed quickly three times with 
deionized water. Ten fresh leaves were cut in 1 × 1 cm sec-
tions, placed in 10 mL deionized water, and left into the dark 
at 25 °C for 2 h. Subsequently, total electrical conductivity 
 (EC1) was measured. Following these steps, samples were 
autoclaved, cooled at 25 °C, and the total electrical conduc-
tivity  (EC2) was measured again. Electrolyte leakage (EL) 
was measured as follows:

Malondialdehyde (MDA)

Malondialdehyde content, an index of lipid peroxidation, 
was measured using the method of Buege and Aust (1978). 
In brief, 1 mL of the supernatant derived from 100–200 mg 
of powdered fresh leaf tissue was mixed to 2 mL of (1:1:1, 
v/v) TCA-TBA-HCL reagent [0.37% (w/w) solution of 
thiobarbituric acid (TBA), 15% tricarboxylic acid (TCA), 
and 0.24 N hydrochloric acid (HCl)]. The TCA-TBA-HCl 
reagent was boiled at 100 °C for 15 min and allowed the 
cooling of the solution in an ice bath. Flocculent materials 
were eliminated via centrifuging at 3.000 × g for 10 min. The 
supernatant was separated, and the absorbance reading was 
done at 532 nm against a blank. MDA concentration was 
calculated using the molar extinction coefficient for MDA-
TBA-complex of 1.56 × 105 M−1 cm−1.

Antioxidant enzymes activity

Peroxidase (POD)

For extraction according to MacAdam et al. (1992) method, 
0.3 g leaf samples were weighed; liquid nitrogen was added 
and ground into fine powder with mortar and pestle. 1.5 mL 
of enzyme extraction buffer (including 50 mM potassium 
phosphate + 2% PVP + 1 mM EDTA) was added to com-
pletely crushed leaf tissue. The suspension was poured into 
2 mL microtubes and centrifuged in a refrigerated centrifuge 
for 20 min at 4 °C at 14.000 rpm. Then, 20 μl of the superna-
tant was taken to measure the activity of the enzyme.

Peroxidase activity was assayed according to MacAdam 
et al. (1992) with some modifications regarding the con-
centrations used. The assay mixture comprised of 0.1 M 
potassium phosphate buffer (pH 6.0), 0.03 M  H2O2, and 

EL (%) =
(

EC2∕EC1

)

× 100
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0.02 M guaiacol. The reaction was initiated by adding 50 
µL of extract to the assay solution. The POD activity was 
recorded at  A475 over a 3 min period.

Catalase (CAT)

The activity of catalase enzyme was evaluated via the 
method reported by Abassi et al. (1998). Two different 
buffer solutions were used, one containing 12.5 mM solu-
tion of  H2O2 in 50 mM  KPO4 buffer (pH 7.0) and another 
one with 50 mM  KPO4 buffer (pH 7.0). The reaction was 
triggered by adding 100 � L of enzyme extract to each 
buffer solution in 3 mL cuvettes, and then, absorbance 
value was recorded at  A240 with the intervals of 10 s for 
3 min.

Ascorbate peroxidase (APX)

The APX was extracted from 100 to 200 mg of powdered 
fresh leaf tissue in 1.5 mL of the following buffer: 50 mM 
 K2PO4 (pH 7.8), containing 5 mM reduced ascorbate (ASA), 
5 mM EDTA, 5 mM DTT, 100 mM NaCl, and 2% PVPP. 
The extracts were then centrifuged at the rate of 15,000 × g 
for 15 min, and the supernatants were used for the next anal-
yses. APX enzyme activity was determined based on the 
decrease at  A290 over a period of 20 s due to the oxidation 
of ASA (Nakano and Asada 1981).

Proline

Proline content was measured following Bates et al. (1973). 
Briefly, 0.5 g of the fresh leaf were ground in 10 mL of 
sulfosalicylic acid, and the mixture was centrifuged at 
14.000 rpm for 10 min at 4 °C. Two mL of filtrate was mixed 
with 2 mL of acid-ninhydrin and 2 mL of glacial acetic acid 
in a test tube. The mixture was incubated in a water bath 
for 60 min at 100 °C and then immediately cooled with ice. 
To each tube, 4 mL of toluene was added into the reaction 
mixture. Then the solution was vortexed for 20 s, and the 
absorbance of the organic phase was recorded at 520 nm. 
The results were compared with a standard curve of proline, 
and the concentration was expressed in µmol  g−1 leaf fresh 
weight.

RNA extraction, cDNA synthesis, and qRT‑PCR 
analysis

Total RNA was extracted according to the manufac-
turer’s instructions of BioBasic kit (BioBasic, Canada; 
BS8231450). The first-strand cDNA was synthesized with 

Primerscript RT reagent kit (RR037Q; Takara Bio Inc., 
Tokio, Japan) according to the manufacturer’s instructions. 
Quantitative real-time (qRT) PCR was performed using 
SYBR Premix ExTaq II (TliRNaseH Plus; Takara Bio Inc., 
Japan) on Master cycler system (ABI, Biosystem, USA) in 
triplicate. The qRT-PCR analysis was carried out with actin 
gene as the internal standard. The gene-specific primers 
were designed by Primer3 (http://prime r3.ut.ee/) and evalu-
ated by OligAnalyzer (Supplementary Table S1). Details 
on the amplification can be found in Tavakoli et al. (2016). 
Relative gene expressions were analyzed using the  2−ΔΔCT 
method (Livak and Schmittgen 2001).

Statistical analysis

The trial was implemented as a factorial experiment in a 
completely randomized block design with three replications 
(n = 3). Three factors, i.e., variety (‘Salmon ‘and ‘Tempo’), 
SA concentration (0, 1 and 2 mM), and soil water content 
(95, 85, and 75% FC) were considered. All the data regard-
ing morpho-physiological, biochemical, and molecular 
attributes were analyzed by analysis of variance (ANOVA). 
Means were separated by LSD (P = 0.05) (Sokal and Rohlf, 
1997) using Statistica software (version 8.1; Stat Soft, Paris, 
France).

Results and discussion

Effect of drought stress and SA application 
on morphological and physiological characteristics

The main problem with plants belonging to Balsaminaceae 
family, like I. walleriana here studied, is the rapid loss of 
water and their wilting, so drought stress strongly reduces 
the plant height, plant dry weight, and the number of flowers, 
with consequent negative economic repercussions (Blanusa 
et al. 2009). The ANOVA showed that the effects of water 
deficit, SA, and their interactions were significant (p < 0.05) 
on morpho-physiological characteristics of the two studied 
cultivars (Table 1). In the present study, drought stress nega-
tively affected plant height, leaf area, number of auxiliary 
shoots, root volume, stem diameter, number of leaves, while 
the application of SA (both at 1 and 2 mM) significantly 
increased their values (Figs. 1 and 2). Drought stress and 
SA had no significant effect on root length (Fig. 2). The 
highest and lowest values of the studied characteristics were 
observed in 95% FC + SA 1 or 2 mM, and 75% FC + SA 
0 mM, respectively (Fig. 2). Like the above-mentioned traits, 
the characteristics of leaf fresh weight, leaf dry weight, stem 
fresh weight, stem dry weight, root fresh weight, root dry 
weight, total fresh weight, and total dry weight had the same 
trends observed for the above-cited parameters (Fig. 3).

http://primer3.ut.ee/
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The results of the analysis of variance showed that 
all of the main factors studied had a significant effect 
(p < 0.05) on RWC, WUE, Chl a, Chl b, total Chl, and 
carotenoids (Table 1). Chl a, Chl b, total and carotenoids 
had the same trends in both Salmon and Tempo. With 
increasing drought stress, the levels of RWC (Fig. 4b), 
WUE (Fig. 4a), Chl a (Fig. 4c), Chl b (Fig. 4d), total 
Chl (Fig. 4e), and carotenoids (Fig. 4f) decreased. The 
highest and lowest values of Chl a, Chl b, total Chl, and 
carotenoids were observed in 95% FC + SA 2 mM and 
in 75% FC + SA 0 mM, respectively (Fig. 4). The results 
showed that Tempo had higher amounts of Chl a, Chl b, 
total chlorophyll, and carotenoids compared to Salmon 
(Fig.  4).Our results showed SA application enhanced 
chlorophyll content both under well water and water defi-
cit stress conditions (Fig. 4c–e). There is some evidence 
that SA application increased N assimilation via activ-
ity of nitrate reductase and N content. The increased N 
assimilation in plants receiving SA provides N backbone 
for chlorophyll and proline synthesis (Khan et al. 2013).

Among the environmental stresses, drought stress is the 
most important limiting factor in production and decreasing 
the growth and yield of many crops, gardens, and medici-
nal plants, especially in arid and semiarid regions of the 
world. Drought stress in plants is associated with loss of 
growth and photosynthesis, production of free radicals, 
decreasing of water potential turgor pressure (Lipiec et al. 
2013; Damalas 2019). In our experiment, drought stress 
had a significant effect on the traits of I. walleriana (Figs. 1 
and 2) so that, with increasing drought stress, all growth 
characteristics decreased and plants flowered earlier. Sev-
eral studies showed that drought stress reduced the desired 
traits and applied SA treatment also reduced the effect of 
drought stress on the studied traits of I. walleriana. (Lipiec 
et al. 2013; Blanusa et al. 2009; Farooq et al. 2009; Damalas 
2019).

Effect of drought stress and SA application on flower 
characteristics

All the main factors and their interactions had a signifi-
cant effect (p < 0.05) on flower characteristics (Table 1). 
The results revealed that 75% FC of drought stress reduced 
flower diameter, flower longevity, and the number of flowers, 
while SA application (1 mM) increased these parameters 
(Fig. 5). Drought stress and SA had no significant effect 
on the time of flower bud appearance and time of flower 
opening (Fig. 5e and a). The highest and lowest values of 
flower characteristics were observed in 95% FC + SA 1 
or 2 mM and 75% FC + SA 0 mM, respectively (Fig. 5). 
Flower longevity in 75% FC + SA 2 mM was 5 and 6 days 
in ‘Salmon’ and ‘Tempo,’ respectively (Fig. 5c). ‘Salmon’ 
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cultivar had a significantly higher number of flowers than 
‘Tempo’ (Fig. 5d).

Loss of water is the main after effect of water stress 
(Farooq et al. 2009), reflecting the water status of plants and 
the most significant indicator for dehydration (Alam et al. 
2013). Relative water content was observed to be remarkably 
reduced in various species subjected to a water deficit, such 
as in mustard (Alam et al. 2013), wheat (Bajji et al. 2000), 
tomato (Hayat et al. 2008), and I. walleriana (Antonić et al. 
2016). Drought stress can cause membrane detriment, thus 
enhancing electrolyte leakage due to negative water balance 
(Hayat et al. 2008; Antonić et al. 2016), that can explain the 
observed significant loss of water (Table 1).

Moreover, improving plant growth and flowering charac-
teristics in water deficit stressed plants under SA application 
in the present study could be due to a better water balance 
and higher antioxidant activities (Figs. 4 and 6). It has been 
shown that SA induce stomatal closure under drought stress 
(Okuma et al. 2014), resulting in higher relative water con-
tent and water use efficiency. Further, decreased electrolyte 
leakage and increased antioxidant activities under SA appli-
cation have been reported (Shi et al. 2006; Wang and Li 
2006).

Effect of drought stress and SA application 
on oxidative stress indicator malondialdehyde 
(MDA)

Except for the interaction of SA × cultivar and drought 
stress × SA × cultivar, all of the studied factors had a sig-
nificant effect (p < 0.05) on the amount of MDA (Table 1). 
The levels of MDA in Tempo were higher than those found 
in Salmon. Generally, MDA was affected by drought stress 
and SA. Increased drought stress caused parallel increases 
of MDA, while the application of SA decreases the amount 
of MDA at all the levels of drought stress. The highest 
and lowest levels of MDA were found in Tempo at 75% 
FC + SA 2 mM (0.35 (µmol  g−1 FW) and 95% FC + SA 
2 mM (0.24 µmol g−1 FW), respectively (Fig. 6b).

ROS aggregates can cause different damage in compart-
ment of plant cells to oxidative stress (Farooq et al. 2009). 
The oxidative stress caused by drought stress in I. walle-
riana with the accumulation of  H2O2 has been confirmed, 
according to Antonić et al. (2016) and, with increasing MDA 
content, indicates peroxidation lipid damage (Fig. 6b). These 
findings are consistent with literary data about increased 
 H2O2 content in drought-stressed mustard (Alam et al. 2013) 
and banana (Bidabadi et  al. 2012). The same increases 

Fig. 1  a Fourth leaf stage of I. 
walleriana plants under drought 
stress and treated with foliar 
applications of salicylic acid 
(SA), b experimental layout 
of the treatments, c effects 
of drought stress without SA 
application, and d effects of 
SA application without drought 
stress
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were observed for MDA in many plant species subjected to 
drought (Hayat et al. 2008; Liu et al. 2011; Bidabadi et al. 
2012; Odjegba and Adeniyi 2012; Alam et al. 2013). One 

of the outstanding effects of SA on I. walleriana was the 
significant protection against membrane lipid peroxidation 
found in plants under all the drought levels (Fig. 6b). The 

Fig. 2  Growth characteristics of I. walleriana plants under drought 
stress and treated with foliar applications of salicylic acid (SA): a 
plant height, b number of leaves per plant, c leaf area, d stem diam-
eter, e number of auxiliary shoots, f root length, and g root volume. 

Data represent means ± standard deviation (SD). Comparison of the 
means was done using the LSD test at p < 0.05. Means with the same 
letter are not significantly different
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Fig. 3  Leaf, root, stem and total weights of I. walleriana plants under 
drought stress and treated with foliar applications of salicylic acid 
(SA): a leaf FW, b leaf DW, c stem FW, d stem DW, e root FW, f root 
DW, g total FW, and h total DW. Data represent means ± standard 

deviation (SD). Comparison of the means was done using the LSD 
test at p < 0.05. Means with the same letter are not significantly dif-
ferent
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reduction of MDA in drought-stressed under SA applica-
tion is reported in different plants such as mustard, banana, 
tomato (Hayat et al. 2008; Bidabadi et al. 2012; Alam et al. 
2013). Reducing the amount of oxidative stress and increas-
ing the amount of proline, SA also protect the membranes 
and cellular organs, preserving enzymes structure and 

reducing their oxidation or decomposition (Costa et al. 2005; 
Alam et al. 2013; Antonić et al. 2016). The foliar application 
of SA is able to increase antioxidant capacity, reduce the 
amount of lipids peroxidation and oxidative damage, and 
protect photosynthetic membranes and pigments, so prevent-
ing chlorophyll degradation (Costa et al. 2005).

Fig. 4  WUE, RWC, and pigments in I. walleriana plants under 
drought stress and treated with foliar applications of salicylic acid 
(SA): a WUE, b RWC, c Chl a, d Chl b, e total Chl, and f total carot-

enoids. Data represent means ± standard deviation (SD). Comparison 
of the means was done using the LSD test  at p < 0.05. Means  with 
the same letter are not significantly different. Chl: chlorophyll
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Effect of SA and drought stress on antioxidant 
enzymes

Peroxidase (POD) activity

Except for the cultivar factor, all of the studied factors had a 
significant (p < 0.05) effect on POD activity (Fig. 6d). Mean 
comparison of treatment showed that drought stress and the 
application of SA increased the amount of POD enzyme. 

The application of 2 mM SA increased the activity of POD 
up to 25.19 and 19.64 units  g−1 FW in Salmon and Tempo, 
respectively, while the level of 1 mM SA decreased the POD 
activity from 23.27 to 18.40 units  g−1 FW in Salmon and 
from 19.12 to 17.33 units  g−1 FW in Tempo, compared to the 
control plants maintained at 95% FC (Fig. 6d). POD activ-
ity of Tempo cultivar in 85% and 95% FC under 0 mM SA 
were not significantly different compared to 85% and 95% 
FC under 1 or 2 mM SA, respectively (Fig. 6d).

Fig. 5  Flower characteristics of I. walleriana plants under drought 
stress and treated with foliar applications of salicylic acid (SA): a 
time of flower opening, b flower diameter, c flower longevity, d num-
ber of flowers, and e time of flower bud appearance. Data represent 

means ± standard deviation (SD). Comparison of the means was done 
using the LSD test at p < 0.05. Means with the same letter are not sig-
nificantly different
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Increased POD activity in plants under water deficit 
stress and SA application suggests the high demands of 
 H2O2 quenching. In line with the present study, it has also 
been shown that SA generally increases the total POD activ-
ity in mustard, tomato, and I. walleriana (Hayat et al. 2008; 
Alam et al. 2013; Antonić et al. 2016).

Catalase (CAT) and ascorbate peroxidase (APX) activities

Drought stress caused increases in CAT and APX activities 
at both the SA concentrations used, while the application 
of SA reduced both CAT and APX activities at all levels of 

drought stress (Fig. 6). Mean comparison of the main effects 
showed that CAT activity in ‘Salmon’ cultivar is generally 
higher than in ‘Tempo.’ The highest and lowest values of 
CAT activity were observed in ‘Tempo ‘cultivar in 75% 
FC + SA 0 mM (1.57 units  g−1 FW), and 95% FC + SA 2 mM 
(1.29 units  g−1 FW), respectively (Table1 and Fig. 6c).

Exogenous SA was found to inhibit the CAT enzyme 
activity in I. walleriana under different dose-level 
(Antonić et al. 2016). This effect is more effective in the 
plants exposed to abiotic stress, where CAT activity is 
very higher than in control plants at 95% FC (Fig. 6). In 
the similar studies, SA was found to enhance the CAT 

Fig. 6  Effects of drought stress and treated with foliar applications of 
salicylic acid (SA) on a electrolyte leakage, b MDA content, c CAT 
activity, d POD activity, e APX activity, and f proline content in 
leaves of I. walleriana plants. Data represent means ± standard devia-

tion (SD). Comparison of the means was done using the LSD test at 
p < 0.05. Means  with the  same letter are not significantly different. 
APX: ascorbate peroxidase; CAT: catalase; MDA: malondialdehyde; 
POD: peroxidase



981International Journal of Environmental Science and Technology (2022) 19:969–984 

1 3

activity (Ananieva et al. 2004; Hayat et al. 2008; Kadio-
glu et al. 2011; Alam et al. 2013; Demiralay et al. 2013). 
Moreover, Chen et al. (1997) reported that different CAT 
isoform may have a different degree of sensitivity to SA. 
The results on the activity of CAT showed that drought 
stress increased the activity of this enzyme, but the use 
of SA reduced its activity (Fig. 6c). The increased activi-
ties of antioxidant enzymes under drought conditions can 
be considered an indicator for the activity of the enzyme 
under abiotic stress and plant protection against abiotic 
stress (Kukreja et al. 2005).

Effect of SA and drought stress on proline 
accumulation and its synthesis‑related genes

Except for the interaction of SA × drought and drought 
stress × SA × cultivar, all of the studied factors had a 

significant effect (p < 0.01) on the amount of proline 
(Table 1). The levels of proline in Tempo were higher than 
those found in Salmon. Generally, proline was affected by 
drought stress and SA. Increasing drought stress and foliar 
application of SA increased amount of proline in both cul-
tivar. The highest and lowest level of proline were found in 
Tempo at 75% FC + SA 1 mM (3.90 µmol g−1 FW) and in 
Salmon at 95% FC + SA 0 mM (1.29 µmol g−1 FW), respec-
tively (Fig. 6f).

Proline accumulation is one of the most commonly sol-
utes that is often associated with drought tolerance, since it 
contributes to all the important characteristics of drought 
tolerance, such as osmotic regulation, osmotic protection, 
antioxidation, and ROS scavenging (Verbruggen and Her-
mans 2008; Farooq et al. 2009; Antonić et al. 2016). Proline 
is also involved in the stabilization of membranes and pro-
teins, buffering cellular redox potential under stress, metal 
chelation, and signaling, also acting as a sink for carbon and 
nitrogen for their use after stress relief (Hayat et al. 2012). 
Exogenous application of SA stimulates proline accumu-
lation in stressed plants (Misra and Saxena 2009; La et al 
2019b), particularly when drought-induced proline accumu-
lation is low to moderate. This has been observed in differ-
ent plant species (Hayat et al. 2008; Bidabadi et al. 2012; 
Marcińska et al. 2013) and confirmed also by our results 
on in I. walleriana (Fig. 6f). Besides upregulation of genes 
involving proline synthesis that enhanced proline accumula-
tion discussed below, Nazar et al. (2015) showed increasing 
of proline could be observed in mustard under SA treatment 
through the increase in γ-glutamyl kinase (GK) and decrease 
in proline oxidase (PROX) activity.

Here, the expression of P5CS gene was slightly 
increased in 95% FC + SA 0 mM and then significantly 
increased in 75% FC and SA treatment (Fig. 7a). The 
expression pattern of P5CS showed a similar trend in 
both the studied cultivars, but in Salmon it reached higher 
levels than in control plants at 95% FC (Fig. 7a). Gene 
expression of P5CR in both cultivars increased in 75% 
FC and SA treatment, and its pattern was similar to that 
of P5CR with differences in terms of intensity (Fig. 7b). 
From these data, it appears that the observed increases in 
proline accumulation (Fig. 6f) were likely due to the due 
to up-regulation of P5CS and P5CR genes (Fig. 7). This 
is in agreement with the model proposed by Verslues and 
Sharma (2010), who found proline accumulation linked 
to P5CS up-regulation in Arabidopsis under saline stress. 
Moreover, the expression of P5CS1 and P5CS2 was 
induced under different abiotic stresses in Brassica napus 
before the accumulation of proline (Xue et al. 2009), and 
Tavakoli et al. (2016) reported the expression of P5CS 
and P5CR in salinized wheat.

There are two pathways in proline biosynthesis includ-
ing the glutamate (Glu) and ornithine (Orn) pathways (Hu 

Fig. 7  Relative expression of a P5CS and b P5CR genes in I. wal-
leriana plants under drought stress and treated with foliar applica-
tions of salicylic acid (SA). For drought stress, seedlings were sub-
jected to water deficit at 75%, 85%, and 95% field capacity (FC). 
Data represent means ± standard deviation (SD). Comparison of the 
means was done using the LSD test at p < 0.05. Means with the same 
letter are not significantly different. P5CS: encoding Δ1-pyrroline-
5-carboxylate synthetase gene; P5CR: Δ1-pyrroline-5-carboxylate 
reductase (P5CR) gene
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et al. 1992; Roosens et al. 1998). Glu pathway gener-
ally occurs under abiotic stress, while pathway of Orn is 
involved in development of seedling (Armengaud et al. 
2004). SA causes the dynamic transport process of pro-
line and also vital for the protective role of proline in 
plants. Thus, under SA treatment glutamic-γ -semi-alde-
hyde (GSA) converted to pyrroline-5- carboxylate (P5C) 
in cytosol and chloroplasts and so increased the proline 
transport (La et al. 2019a).

Conclusions

The results indicated that drought stress, especially at 
75% FC, applied to Impatiens walleriana reduced flower 
diameter, number of flowers, and flower longevity, while 
salicylic acid treatment was effective in increasing these 
characteristics. Generally, SA had beneficial effects on 
plant growth through facilitating water uptake, higher anti-
oxidant enzyme activities, and better membrane stability. 
On the other side, the exogenous application of SA, par-
ticularly at a concentration of 2 mM, mitigated the delete-
rious effects of drought stress, causing increasing growth 
indices, better morpho-physiological traits, and enhanced 
water use efficiency. The results also showed that Salmon 
cultivar is more tolerant to drought compared to Tempo 
cultivar, being so recommended in areas with low avail-
able water.
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